Search Results

Documents authored by Kamei, Sayaka


Document
Asynchronous Gathering in a Torus

Authors: Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
We consider the gathering problem for asynchronous and oblivious robots that cannot communicate explicitly with each other but are endowed with visibility sensors that allow them to see the positions of the other robots. Most investigations on the gathering problem on the discrete universe are done on ring shaped networks due to the number of symmetric configurations. We extend in this paper the study of the gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity detection. That is, robots cannot make the difference between nodes occupied by only one robot from those occupied by more than one robot unless it is their current node. Consequently, solutions based on creating a single multiplicity node as a landmark for the gathering cannot be used. We present in this paper a deterministic algorithm that solves the gathering problem starting from any rigid configuration on an asymmetric unoriented torus shaped network.

Cite as

Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada. Asynchronous Gathering in a Torus. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kamei_et_al:LIPIcs.OPODIS.2021.9,
  author =	{Kamei, Sayaka and Lamani, Anissa and Ooshita, Fukuhito and Tixeuil, S\'{e}bastien and Wada, Koichi},
  title =	{{Asynchronous Gathering in a Torus}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.9},
  URN =		{urn:nbn:de:0030-drops-157845},
  doi =		{10.4230/LIPIcs.OPODIS.2021.9},
  annote =	{Keywords: Autonomous distributed systems, Robots gathering, Torus}
}
Document
Gathering on Rings for Myopic Asynchronous Robots With Lights

Authors: Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
We investigate gathering algorithms for asynchronous autonomous mobile robots moving in uniform ring-shaped networks. Different from most work using the Look-Compute-Move (LCM) model, we assume that robots have limited visibility and lights. That is, robots can observe nodes only within a certain fixed distance, and emit a color from a set of constant number of colors. We consider gathering algorithms depending on two parameters related to the initial configuration: M_{init}, which denotes the number of nodes between two border nodes, and O_{init}, which denotes the number of nodes hosting robots between two border nodes. In both cases, a border node is a node hosting one or more robots that cannot see other robots on at least one side. Our main contribution is to prove that, if M_{init} or O_{init} is odd, gathering is always feasible with three or four colors. The proposed algorithms do not require additional assumptions, such as knowledge of the number of robots, multiplicity detection capabilities, or the assumption of towerless initial configurations. These results demonstrate the power of lights to achieve gathering of robots with limited visibility.

Cite as

Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada. Gathering on Rings for Myopic Asynchronous Robots With Lights. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kamei_et_al:LIPIcs.OPODIS.2019.27,
  author =	{Kamei, Sayaka and Lamani, Anissa and Ooshita, Fukuhito and Tixeuil, S\'{e}bastien and Wada, Koichi},
  title =	{{Gathering on Rings for Myopic Asynchronous Robots With Lights}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.27},
  URN =		{urn:nbn:de:0030-drops-118139},
  doi =		{10.4230/LIPIcs.OPODIS.2019.27},
  annote =	{Keywords: LCM robot system, ASYNC schedulers, myopic, luminous, ring networks}
}
Document
Brief Announcement
Brief Announcement: Neighborhood Mutual Remainder and Its Self-Stabilizing Implementation of Look-Compute-Move Robots

Authors: Shlomi Dolev, Sayaka Kamei, Yoshiaki Katayama, Fukuhito Ooshita, and Koichi Wada

Published in: LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)


Abstract
In this paper, we define a new concept neighborhood mutual remainder (NMR). An NMR distributed algorithms should satisfy global fairness, l-exclusion and repeated local rendezvous requirements. We give a simple self-stabilizing algorithm to demonstrate the design paradigm to achieve NMR, and also present applications of NMR to a Look-Compute-Move robot system.

Cite as

Shlomi Dolev, Sayaka Kamei, Yoshiaki Katayama, Fukuhito Ooshita, and Koichi Wada. Brief Announcement: Neighborhood Mutual Remainder and Its Self-Stabilizing Implementation of Look-Compute-Move Robots. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 43:1-43:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dolev_et_al:LIPIcs.DISC.2019.43,
  author =	{Dolev, Shlomi and Kamei, Sayaka and Katayama, Yoshiaki and Ooshita, Fukuhito and Wada, Koichi},
  title =	{{Brief Announcement: Neighborhood Mutual Remainder and Its Self-Stabilizing Implementation of Look-Compute-Move Robots}},
  booktitle =	{33rd International Symposium on Distributed Computing (DISC 2019)},
  pages =	{43:1--43:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-126-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{146},
  editor =	{Suomela, Jukka},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.43},
  URN =		{urn:nbn:de:0030-drops-113504},
  doi =		{10.4230/LIPIcs.DISC.2019.43},
  annote =	{Keywords: neighborhood mutual remainder, self-stabilization, LCM robot}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail